

Beam Requirements for µ-e conversion

Beam is critical element for μ -e conversion

Higher muon intensity
 more than10¹² μ⁻/sec
 pulsed beam

rejection of background from proton beam

Less beam contamination

- no pion contamination
 - ⇒ long flight path

beam extinction between pulses

⇒ kicker magnet

Narrow energy spread

- allow a thinner muon-stopping target
 - ⇒ better e⁻ resolution and acceptance

Point Source

- allow a beam blocker behind the target
 - ⇒ isolate the target and detector
 - tracking close to a beam axis

PRISM=Phase Rotated
Intense Slow Muon source

PRISM is a high intensity muon source with narrow energy spread and high purity.

high intensity: (Solenoid Pion Capture)
 narrow momentum width: (Phase rotation)
 small emittance (in future): (Cooling)

What is Phase Rotation?

Phase Rotation = decelerate particles with high energy and accelerate particle with low energy by high-field RF

A narrow pulse structure (<1 nsec) to ensure that high-energy particles come early and low-energy one come late.

Electromagnetic Wave as seen from above (red is +, blue -) Moving electric wave Positively charged particles () close to the crest of the E-M wave experience the most force forward; those closer to the center experience less of a force. The result is that the particles tend to move together with the wave

FFAG for Phase Rotation

a ring instead of linear systems
reduction of # of rf cavities
reduction of rf power consumption synchro compact rotation

FFAG = Fixed Field Alternating Gradient Synchrotron synchrotron oscillation for phase rotation

not cyclotron (isochronous)

large momentum acceptance

larger than synchrotron
± several 10 % is aimed

large transverse acceptance

strong focusing large horizontal emittance reasonable vertical emittance at low energy

PRISM=Phase RotatedIntense Slow Muon source

Specifications ğ muon intensity: $10^{11} \sim 10^{12}$ /sec 8 central momentum: 68 MeV/c 8 momentum width: 3 % (<--- 30 %) by phase rotation (5turns) Repetition: 100 Hz 8 pion contamination : 10^{-18} for 150m

8

PRIME = PRIME Mu E experiment

using PRISM

Aim at 10⁻¹⁸

Detector Option: Spiral solenoid spectrometer

> eliminate low energy particles by a toroidal magnetic field

$$D = \frac{1}{0.3B} \frac{s}{R} \frac{(p_s^2 + \frac{1}{2}p_t^2)}{p_s}$$

PRIME Sensitivity

At the best muon intensity from PRISM, $B(\mu^-N \to e^-N) \sim 6 \times 10^{-19}$

	PRIME	MECO	improvement factor
muon intensity	1.3x10 ¹¹ /sec	2x10 ¹¹ /sec	0.65
stopping efficiency	80 %	40%	2
detector acceptance	35%	20%	1.8
time window	100%	40%	2.5
running period	can run for 5 years	1 year	5
a total			30

PRIME Background Rates

Muon Decay in Orbit ($\propto (E_{\mu e} - E_e)^5$) Detector Resolution $\Delta E_e = 235 \text{ keV}$

Preliminary !

at the sensitivity of 10^{-18}

Background	Rate	comment
Muon decay in orbit	0.05	energy reso 350keV(FWHM)
Radiative muon capture	0.01	end point energy for Ti=89.7MeV
Radiative pion capture	0.03	long flight length in FFAG, 2 kicker
Pion decay in flight	0.008	long flight length in FFAG, 2 kicker
Beam electron	negligible	kinematically not allowed
Muon decay in flight	negligible	kinematically not allowed
Antiproton	negligible	absorber at FFAG entrance
Cosmic-ray	< 10^-7 events	low duty factor
Total	0.10	

Muon Electric Dípole Moment

Electric Dipole Moments

EDM is T-odd and Podd, and CP-violating if CPT is held. New CP violation mechanism is needed for baryogenesis. Search for EDM would give a wide window for new physics since EDM in SM is very small.

	upper limits	SM values
Neutron	$< 6.3 \times 10^{-25} e \cdot cm$	$< 10^{-31} e \cdot cm$
Proton	$(3.7 \pm 6.3) \times 10^{-31} e \cdot cm$	
199 _{Hg}	$< 2.1 \times 10^{-28} e \cdot cm$	$< 10^{-28} e \cdot cm$
Electron	$< 1.6 \times 10^{-27} e \cdot cm$	$< 10^{-38} e \cdot cm$
Muon	$< 1.1 \times 10^{-18} e \cdot cm$	$< 10^{-35} e \cdot cm$

Muon (g-2) vs. muon EDM

Leptogenesis and MSSM

Leptogenesis is almost independent on dirac phase of neutrino mixing (a la J. Ellis et al.)

Muon Spin Precession

muon spin precession relative to momentum vector ($\vec{\beta} \cdot \vec{B} = \vec{\beta} \cdot \vec{E} = 0$)

$$\vec{\omega} = -\frac{e}{m} \left[a\vec{B} + (\frac{1}{\gamma^2 - 1} - a)\frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2}(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B}) \right]$$

g-2 measurement : 2nd term = 0 EDM measurement: 1st+2nd terms =0

$$a = \frac{g-2}{2}; EDM = \eta \cdot \frac{e\hbar}{4mc} = \eta \times 4.7 \times 10^{-14} e \cdot cm$$

Measurement Principle

Cancellation E field

 $E = \frac{aBc(\gamma^2 - 1)}{\beta} \qquad E = 2 \text{ MV/m}, B = 0.25 \text{ T}$ E field for EDM rotation $E = Bc\beta \qquad B = 0.25 \text{ T} \rightarrow E = 72 \text{ MV/m}$

Statistical Reg. for EDM

@BNL/AGS

Istage 1: N₁P₁²=10¹²

use the existing g-2 ring but with weak magnetic focusing aim at 10⁻²² e cm (400 hours)

stage 2: N, P, $^2 = 10^{16}$ strong focusing oaim at 10⁻²⁴ e cm

(4000 hours)

|stage 3: N,P,2=1020

use cooled muon beams from the stage Il of the front end of NuFact.

 \rightarrow momentum : 0.2-0.5 GeV/c $\Rightarrow 10^{11} \text{ muons/sec}$ new storage ring aim at 10⁻²⁶ e cm (for a year)

@J-PARC

PRISM-II

PRISM-II = FFAG-based phase rotator for the muon EDM measurement.

PRISM-2

Increase N (intensity)

phase rotation to increase intensity within the given momentum band

Increase P (polarization)

- curved solenoid to select (parent) pion momentum to keep reasonable muon polarization.

PRISM-II

- d_µ<10⁻²⁴ e.cm → NP²>10¹⁶ total
 Long decay section with pion mo
 - Initial muon
 - Polarization
 - Backward decay of pions
- Accept 500 MeV/c muons and pł
 - Transverse 800 π mm.mrad
 - Momentum acceptance ±30%
 - $\rightarrow \pm 1 \sim 2\%$ for muon strage ring
 - Decay survivability
 - $NP^2 = 10^9 \sim 10^{10}$

J-PARC case (Muon Factory)

Proton Machine

J-PARC = Japan Proton Accelerator Research Complex

Major Topics at MF

The muon system is one of the best place to search for physics beyond the standard model.

Process	In Standard Model
muon lepton flavor violation	forbidden process
muon EDM	suppressed process
muon g-2	precise measurement

LOI to J-PARC

for muon particle physics

	title	contact persons
1	The PRISM Project - A Muon Source of the World-Highest Brightness by Phase Rotation -	Y. Mori, K. Yoshimura, N. Sasao, Y. Kuno
2	An Experimental Search for the $\mu\text{-}e$ Conversion Process Towards an Ultimate Sensitivity of the Order of 10^{-18}	Y. Mori, K. Yoshimura, N. Sasao, Y. Kuno
3	Request for A Pulsed Proton Beam Facility at J-PARC	R.S. Hayano, Y. Kuno
4	A Study of Neutrino Factory in Japan	Y. Mori, Y. Kuno
5	Search for a Permanent Muon Electric Dipole Moment at 10 ⁻²⁴ ecm Level	Y. Semertzidis, J. Miller, Y. Kuno
6	An Improved Muon (g-2) Experiment at J-PARC	L. Roberts
7	A Study of a Target System for a 4-MW, 50-GeV Proton Beam	K. McDonald, H. Kirk, Y. Kuno, Y. Yoshimura

A pulsed proton beam is required for all.

Muon Factory@J-PARC

Pulsed Proton Beam Facility is newly requested to J-PARC.

Prospect at MF

Muon Lepton Flavor Violation

The Muon Trio

Muon g-2

Muon LFV

Muon EDM

Im

v.^µ

μ

μ

μ

mixing

B

mixing

 \tilde{B} W e

 μ (m / m)

≈ 10

μ

e

in SUSY case

Slepton mixing matrix

Hints for SUSY breaking