Physics Potential of Muon Factory and Neutrino Factory Based on FFAGs

Yoshitaka KUNO Osaka University TRIUMF FFAG Symposium, April 14th 2004, at TRIUMF

What are Muon and Neutrino Factories ?

Muon Factory

high intensity S $10^{12} - 10^{14} \mu^{\pm}/sec$ a MW proton machine needed 8 high brightness narrow E width 3 beam treatment (FFAG) 3 high purity (no pions) 8 dedicated to types of experiments?

What are Muon and Neutrino Factories ?

Neutrino Factory

high intensity $10^{19} - 10^{21} \nu / year$ a MW proton machine needed 8 use decays of muons accelerated to high energy (FFAG) and stored in the ring 8 all four types available 8 high energy neutrinos 8 known beam quality

FFAG Advantages

Large Acceptance Both Longitudial and Transverse directions 8 strong focusing Fast Acceleration due to fixed ğ magnetic field

3

fast proton FFAG @KEK (2001)

Suitable to Muon Acceleration

Outline

3 Introduction to Flavor Particle Physics Muon Factory (only specific topics) Muon Lepton Flavor Violation (PRISM) Muon Electric Dipole Moment (PRISM-II) J-PARC Case Neutrino Factory Physics Motivation PRISM R&D Status 8 8 Conclusion / Announcement

Flavor Partícle Physics

Look up from Low to High

Flavor Physics

supersymmetry

Muon Lepton Flavor Víolatíon

Charged Lepton Flavor Violation (cLFV)

Flavor changing processes in charged lepton ?

Neutrino oscillation

• Example: $\mu^+ \rightarrow e^+ \gamma$

muon flavor	-1	0
electron flavor	0	-1

Not be observed yet !

Example: $\mu^+ \rightarrow e^+ e^- e^+$ muon flavor -1 0 0 0 electron flavor 0 -1 +1 -1

Not be observed yet !

Contribution to EFV from Neutrino Oscillațion

Jeeder Neutrino mixing has been established. $\propto (m_v / m_W)^4$ $v_{e} = v_{1}\cos\theta + v_{2}\sin\theta$ $v_{\mu} = -v_1 \sin\theta + v_2 \cos\theta$ Ve Contribu+ W $B(\mu \rightarrow$ $\frac{5\alpha}{32\pi}\sin^2\theta\cos^2\theta\frac{(m_1^2-m_2^2)^2}{m^4}$

Very Small (10^{-50})

High Energy Scale by Rare Decays

 e^{-}

 e^{-}

LFV decay

 e^{+}

 v_{e}

 v_{μ}

Normal Muon Decay

$$\frac{\Gamma(\mu \rightarrow eee)}{\Gamma(\mu \rightarrow evv)} = \frac{G_X^2}{G_F^2} = \left(\frac{m_W}{m_X}\right)^4 \le 10^{-12}$$
$$m_X \ge 10^3 m_W \approx 100 TeV (= 10^{15} eV)$$

Rare decay searches at low energy could access physics at high energy scale which cannot be reached by accelerators.

LFV Models beyond SM

Sensitivity to Different Muon Conversion Mechanisms

Supersymmetry Predictions at 10⁻¹⁵

Compositeness

<u>le</u>

 $\Lambda_{\rm c}$ = 3000 TeV

Heavy Neutrinos $|U^*_{\mu N} U_{e N}|^2 =$ 8 x 10⁻¹³

Second Higgs doublet

$$g_{H\mu e} = 10^{-4} \times g_{H\mu \mu}$$

Leptoquarks μ^{-} d^{-} μ^{-} d^{-} q^{-} q^{-} Anom couple $M_{L} = d^{-}$ d^{-} e^{-} q^{-} $M_{Z'} = q^{-}$ $M_{Z'} = 3000 (\lambda_{\mu d} \lambda_{ed})^{1/2} \text{ TeV/c}^{2}$ After W. Marciano

Heavy Z', Anomalous Z coupling $M_{Z'} = 3000 \text{ TeV/c}^2$ $B(Z \rightarrow \mu e) < 10^{-17}$

W. Molzon, UC Irvine The MECO Experiment to Search for Coherent Conversion of Muons to Electrons

September 27, 2002

SUSY-GUT

LFV induced from finite slepton mixing through radiative correction

- SUSY SU(5) predictions BR $(\mu \rightarrow e\gamma) \approx 10^{-14} \div 10^{-13}$
- SUSY SO(10) predictions $BR_{SO(10)} \approx 100 BR_{SU(5)}$

R. Barbieri et al., Nucl. Phys. B445(1995) 215

MSSM with Seesaw Models Neutrino Mixing→Slepton Mixing→Charged Lepton Mixing

History of LFV Searches

Why Muon LFVs?

For the muons,

 $\bullet \mu^- + N(A, Z) \to e^+ + N(A, Z - 2)$

 $\bullet \mu^+ e^- \to \mu^- e^+$ $\bullet \mu^- + N(A, Z) \to \mu^+ + N(A, Z - 2)$ $\bullet\nu_{\mu} + N(A,Z) \to \mu^{+} + N(A,Z-1)$ $\bullet \nu_{\mu} + N(A, Z) \to \mu^{+} \mu^{+} \mu^{-} + N(A, Z - 1)$

What is $\mu \rightarrow e\gamma$?

Event Signature

 E_e=m_μ/2, E_γ=m_μ/2 (=52.8 MeV)
 angle θ_{eγ}=180 degrees (back-to-back)
 time coincidence

Backgrounds prompt physics background radiative muon decay μ->eννγ when two neutrinos carry very small energies...... accidental background • positron e⁺ in $\mu \rightarrow e\nu\nu$ • photon γ in $\mu \rightarrow e \nu \nu \gamma$ in e⁺e⁻ annihilation in flight

MEG at PSI

1m

Accidental Background

Accidental Background
$$\propto \left(R_{\mu}\right)^{2} \times \Delta E_{e} \times \left(\Delta E_{\gamma}\right)^{2} \times \Delta t_{e\gamma} \times \left(\Delta \theta_{e\gamma}\right)^{2}$$

Place	Year	ΔE _e	ΔΕ _γ	$\Delta t_{e\gamma}$	$\Delta \theta_{e\gamma}$	R _µ	Upper Limit	References
SIN	1977	8.7%	9.3%	1.4 ns	-	5×10^{5}	$< 1.0 \times 10^{-9}$	A. Van der Schaaf, et al., NP A340(1980)249
TRIUMF	1977	10%	8.7%	6.7 ns	-	2×10^{5}	$< 3.6 \times 10^{-9}$	P. Depommier et al., PRL 39(1977)1113
LANL	1979	8.8%	8%	1.9 ns	37 mrad	2.4×10^{6}	$< 1.7 \times 10^{-10}$	W.W. Kinnison et al., PR D25(1982)2846
Crystal Box	1986	8%	8%	1.8 ns	87 mrad	4×10^{5}	$< 4.9 \times 10^{-11}$	R.D. Bolton, et al., PR D38(1988)2077
MEGA	1999	1.2%	4.5%	1.6 ns	17 mrad	2.5×10^{8}	$< 1.2 \times 10^{-11}$	M.L. Brooks, et al., PRL 83(1999)1521
PSI	2004?	0.7%	1.4%	0.15 ns	12 mrad	10^{8}	< 10 ⁻¹⁴	T. Mori, et al., Research Proposal to PSI (1999)

 $B_{\mu \rightarrow e\gamma} = 10^{-14}$ $N_{b} = 0.5 \text{ events}$

• $R_{\mu} = 10^{10} \text{ } \mu/\text{s}$ • $N_{\text{b}} \sim 10^4 \text{ events}?$

 $B_{\mu \to e\gamma} = 10^{-16}$

What is µ-e conversion?

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A, Z) \rightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture (=µ-e conversion)

 $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$

lepton flavors changes by one unit

 $B(\mu^{-}N \rightarrow e^{-}N) = \frac{\Gamma(\mu^{-}N \rightarrow e^{-}N)}{\Gamma(\mu^{-}N \rightarrow \nu N')}$

Photom-mediated LFV

 $\mu - e \text{ conversion vs.}$ $\mu \rightarrow e \gamma$

If photon-mediated, $\frac{B(\mu N \rightarrow eN)}{B(\mu \rightarrow e\gamma)} \sim \frac{1}{100}$

But, experimentally,

Higgs-mediated SUSY LFV

Higgs-exchange for LFV in SUSY Seesaw model

When H_0 mass is small, Higgs-mediated diagram contributes more.

 $\frac{B(\mu N \to eN)}{B(\mu \to e\gamma)} \sim O(1)$ at $H_0 \sim 200 \text{ GeV}$

SINDRUM-II Results

Sindrum-II 1993 result

 $B(\mu^- + Ti \to e^- + Ti) < 6.1 \times 10^{-13}$

SINDRUM-II Results

Final result

µe Conversion on Gold

In the likelihood analysis of the energy distribution a flat background from cosmic rays and radiative pion capture was allowed.

Result: $B_{\mu e}^{\text{gold}} < 8 \times 10^{-13}$ 90% C.L.

MECO at BNL

aim for 10^{-16}

- 1. Large acceptance pion capture in a SCS
- Muon transport (60 120 MsV/c) in a curved solenoid
- Long detector solenoid with muon stpping target and tracking system

R&D money in US-FY2004. Construction money in US-FY2006.

Which Muon LFV Process Next?

	issue	beam requirement
$\mu \to e\gamma$	detector-limited	a continuos beam
$\mu \rightarrow eee$	detector-limited	a continuos beam
$\mu N \longrightarrow eN$	beam-limited	a pulsed beam