O PRISM Status

Yoshitaka Kuno Osaka University TRIUMF FFAG Workshop、April 15th, 2004

$\bigcirc \bullet \bullet$

PRISM group

M. Aoki, Y. Arimoto, Y. Kuno,
 A. Sato, M. Yoshida (Osaka)

S. Machida, Y. Mori, Y. Yokoi,
 K. Yoshimura (KEK)

○ Y. Iwashita (Kyoto) and others

Outline

Introduction to PRISM
Lattice Design
PRISM-FFAG Magnet
Schedule

$\bigcirc \bullet \bullet$

Introduction

O PRISM, What?

Phase Roted Intense Slow Muon Source

Search for Lepton Flavor violation $B(\mu-N\rightarrow e-N)<10^{-18}$

High Intensitystopped μ experimentintensity : 10¹¹-10¹²μ±/secbeam repetition : 100-1000Hzmuon kinetic energy : 20 MeV (=68 MeV/c)

High Brightness

kinetic energy spread : ±0.5-1.0 MeV

High Purity π contamination < 10-18

O PRISM Layout

Solenoid Pion Capture Pion-decay and Transport Phase Rotation

FFAG advantages: synchrotron oscillation necessary to do phase rotation

large momentum acceptance

necessary to accept large momentum distribution at the beginning to do phase rotation large transverse acceptance muon beam is broad in space

PRISM-FFAG ring construction has started in JFY2003.

FFAG Magnet

25/Aug/2003 12:09:46

DFD triplet magnet

UNITS	
Length	cm
Magn Flux Density	gauss
Magn Field	oersted
Magn Scalar Pot	oersted-cm
Magn Vector Pot	gauss-cm
Elec Flux Density	C/cm ²
Elec Field	V/cm
Conductivity	S/cm
Current Density	A/cm ²
Power	W
Force	N
Energy	J

PROBLEM DATA triplet.op3 TOSCA Magnetostatic Non-linear materials Simulation No 1 of 1 36480 elements 156911 nodes 1404 conductors Nodally interpolated fields

Local Coordinates Origin: 0.0, 0.0, 0.0 Local XYZ = Global XYZ

FFAG field

Radial Sector Type

O Tracking

GEANT3 simulation with TOSCA magnetic field

not a sinusoidal, but a sawtooth RF shape is needed.

$\pm 5nsec$ muon width at given momentum

ORSimulation

Horizontal

A. Sato

O PRISM RF Amp.

C. Ohmori, M. Aoki

Field gradient	250kV/m	
# of gaps	4	
Impedance	1 kohm/gap	
core	MA 4 cores/gap	
Duty	0.1% air cooling	
Power Tube	EIMAC 4CW150K DC35-40kV 900 kW(peak)	
Amplifier	AB-class, push-pull for each gap	

RF cavity and amplifiers are constructed in 2003/2004

OBATION RF Field Gradient

Lattice Design

Optics Issues

Radial Sector type Scaling FFAG

of Cells
k value
F/D ratio
and so on....

How to be quick!

FFAG magnetic field calculation

For determination of the PRISM-FFAG lattice, calculation of non-linear FFAG magnetic field is needed, given the magnet parameters.
 In particular, fringing field is important.
 Iarge aperture for muon acceleration
 3-dim. field calculation (TOSCA) is time-consuming.

A quicker way to calculate is needed.

o from 2 to 3 dim.

What Akira Sato came up is

2-dim. Poisson Calculation at 5 different positions (Bz, Bx)
Br is given from Maxwell. eq.
2-dim spline interpolation

Fringing field is well taken into account.

O Comparison(1)

magnetic fields

600 400

Geant Tracking comparison

> N=8 **k=5** F/D = 7.1 r0=5m

Tune Diagram

DFD Triplet #sectors = 10 half gap = 15cm r0 = 6.5 m 68 MeV/c without field clamp

by Akira Sato

Tune Diagram

DFD Triplet #sectors = 10 half gap = 15cm r0 = 6.5 m 68 MeV/c without field clamp

by Akira Sato

Vertical Aperture 🔿 •

Half gap of 15cm might be sufficient.

PRISM Lattice

Magnet

Objections

Central Momentum: 68 MeV/c
Central Orbit Radius: 6.5 m
of cells: 10
F/D ratio: 8 (variable)
k value: 4.4~5.2 (variable)
BL integral: 6.4Tm (@6.5m)
Effective Field Region
R: 595-705cm (width=110cm)
Z : +-15cm

Residual field at RF core < 100 G

New Features

C-type magnet beam injection and extraction Variable k value by trim coils (Horizontal tune) Variable F/D ratio (vertical tune) Intermediate (uisotropic) yoke reduce # of trim coils no precise machining of yoke needed fringing field trimming

C-Magnet

C-magnets are under consideration so as to make injection and extraction of muons easier.

PRISM Magnet Structure

Intermediate Yoke

Advantage

Intermediate yoke

without directional intermediate yoke

with directional intermediate yoke

TOSCA Calculation

Magnet Design

The design has to been set soon.

COOLING@PRISM

a study will come soon.....

Schedule

JFY2003: RF amp. production
 JFY2004: RF cavity construction, FFAG magnet construction
 JFY2005: FFAG magnet production (continue)
 JFY2006: FFAG magnet construction (completed)

JFY2007: test muon acceleration and phase rotation, test cooling?