

RF Control Deck Recovery

After many tries and tests, OK! It works.

Hundreds Cables were cut during transportation from CERN.

They are reconnected without circuit diagram.

Build-up of Superconducting Lab (300 m²)

Clean assembly rooms

Total area:40m², class 10: 7m², class 100:12.6m², class 10,000:14m²,

Grinding polisher: Max. Diameter: ϕ 420; Max. Length: 575mm; Speed: 0~200rpm.

Water Purification facility

quality:18±0.2MΩ-cm; Flux: 8~20l/m

Chemical polishing facility

Cryostat for 1.3GHz cavity is under construction.

Inner size: Ø350×2500

Outer size: Ø420 \times 3000

Working Temperature: 1.5~4.2K

LabView software for the measurement control and data processing.

2. Sub-Critical Blanket

1) In subcritical reactor optimization study, as the first step, we set up the software package for reactor neutronics research to deal with some special issues in reactors blanket, including the existence of external neutron source, deep burnup, complex structure configuration, etc.. Validity of this package has been confirmed by the benchmark of IAEA's standard example. We also analyzed the influence of uncertainness of nuclear data on the design of neutronics.

- A Benchmark Issued by IAEA to Analysis of Neutron Performance
 - Validates Database and Codes
- To calculate this benchmark, we developed MCNP-ORIGEN2 and TWODNT code systems
- Calculations were made to initial enrichment of ²³³U spatial distributions of power density void reactivity effects spallation source effectiveness etc

subcritical test facility

2) In the reactor physics study, we set up a subcritical test facility of zero power driven by a external neutron source of 252 Cf. Based on this facility, some experiments have been conducted, including critical test, measurement of the effective neutron multiplication factor k_{eff} with four different methods, measurement of fission rate at different subcritical points.

DF-3 Zero power facility re-built as external source driven facility with ²⁵²Cf as external source 20% enrich.U₃O₈ powder light water as moderator **Measurement on**

k_{eff} Fission rates Neutron flux

Purpose of the DF test

A experimental facility has been established to measure K-eff, fission rates, and enhancement of external neutrons in a external driven system. The facility consists of a Cf-252 neutron source and a zero power fast facility.

Nuclear data library

3) Nuclear data library is expended to the higher energy (20MeV) to meet the need of subcritical reactor system optimization. The researches on the theoretical model, calculation method and data evaluation methods for the medium and high energy nuclear reaction have been made. We also studied the dependence of the neutron spectrum and yield by a spallation target on the shape and size of the target.

Target and window's material

4) The target and window's material is a rather difficult issue. The radiation damage study of the target and window materials is of great importance for the understanding of the their lifetimes and the safe operation of the ADS. We use heavy ion to irradiate, modeling neutron' radiation equivalently but much quickly, several kinds of materials for material selection. The compatibility of the target material tungsten with water and sodium has been experimentally studied. Fluid test device is under preparation and some numerical simulations of the thermal engineering problem have been carried out.

Material Compatibility Tests

Tungsten in Na at 500 - 700 ℃ in water at 100 ℃

x: 512 y: 512 i: 165

4 Research Plan in Near Future on ADS

VENUS Facility

- Consists of sub-critical assembly driven by pulsed fast external neutron source
 Study
 - neutron flux distribution neutron energy distribution neutron enhancement fission rate and k_{eff}

Arrangement of the core

Source/Buffer Driven Zone Active Zone Reflector Shielding

Configuration of the core of VENUS facility

External neutron source

Main Control Room of 3.5MW Swimming Pool Reactor

RFQ Linac

(Klystron) : Modulator **2:Capacitors 3:Crowbar 4:Control deck 5:Breaker** 6:Thyristors& **Rectifiers** 7:Circulator 8:Cooling-water distributor **9.ECR-ion source 10.LEBT 11. Waveguide 12 MEBT with** analyzing magnet

RFQ Subsystem setup

RF-power transmission

Kicker in LEBT

The Kicker in the LEBT will soon be setup for beam test.

Pulse shape of the power supply of the kicker(rise-time $35 \ \mu \ s$).

MEBT

MEBT for the beam diagnostics is designed.

Spoke cavity

Superconducting spoke cavity is under preliminary design study.

Low-Beta spherical cell

A 700MHz/ β =0.45 cell has been designed for fabrication

	Five-cell	Single cell (with beam pipe)
Frequency (MHz)	703.655	696.812
Eacc[MV/m]	9 ~ 10	9 ~ 10
Esp/Eacc	3.538	3.319
Bsp/Eacc[mT/(M V/m)]	8.546	8.15
Esp[MV/m]	31.84 ~ 35.38	29.87 ~ 33.19
Bsp[mT]	76.91 ~ 85.46	73.35 ~ 81.5
kcell	1.89%	(Ri=50mm)

5. Consideration in near future

A moderate style multi-purpose verification system is under consideration. In the conceptual study, we consider: **Low** energy accelerator (150MeV/3mA proton linac) Modified existed swimming pool light water sub-critical reactor

Proposal of CSNS 1, Introduction

- 1. It is well known 21st century will be an era of material science, life science and information science.
- 2. Neutron is an ideal probe to study and develop these sciences. So the demand from users of the neutron source is getting rapidly increased.(3 SR)

3. Chinese experts of neutron science and of accelerators had a series of discussions and finally most of them agreed that to build a modest spallation neutron source with beam power of 100kW at China in next 5-7 years,it would be a suitable choice.

4, At present, Chinese Academy of Sciences encourages Institute of Physics and Institute of High Energy Physics to jointly start feasibility study of CSNS, and based this study, to submit a proposal to our government.

Guidance principle of CSNS:

- <u>1. It should be fit in China's present</u> economic situation. Total cost of CSNS should less than 150 M\$.
- 2, It should be an advanced machine in the world and can be used to do important multi-disciplinary scientific research work.
- 3, It should have potential for further upgrading.(0.2MW for phase 2)
- 4, The technology should be mature.

2, preliminary consideration of CSNS

CSNS Phase I: Conceptual design

- Repetition rate : 25 Hz
- Average proton current : $65 125 \,\mu A$
- Proton kinetic energy :
- Average beam power :
- Target:
- Moderators:
- Spectrometers:

HRPD (high resolution powder deffractormeter),

Reflectormeter,

SANS (small angle neutron scattering),

Chopper spectrometer(inelastic)

05 -125 μA 1.6 GeV 100 kW -200kW Tungsten(to be di

Tungsten(to be discussed) Solid CH₄(to be discussed)

Four Spectrometers

The four initial instruments will be

set up (HRPD, DGS, SANS and REF)

at the outset. It covers major parts

of science areas.

Target

Main Parameters of the Target Station of CSNS

Total beam powe	r at target	100 KW
Kinetic Energy of	f proton	1.6Gev
Time structure of	proton pulse	< 1µs
Energy content of	f each proton Pulse	4KJ
Repetition rate		25 Hz
Proton beam dian	neter at target(elliptical)	3 x 10 cm ²
Target	Tungsten cladding with	h Tantalum
	D ₂ O cooled	
Moderators	$\mathbf{RT} \mathbf{H}_{2}\mathbf{O}, \mathbf{L} \mathbf{H}_{2}, \mathbf{L} \mathbf{CH}_{4}, ($	Solid CH ₄)
Reflector	Pb/Be,	D ₂ O cooled

• Monde Carlo calculation (Neef 1995)

Monde Carlo calculation give a total deposited power of 47KW i.e. 47% of total beam power. If 20% margin is added to give the design value for total deposited power in the target, i.e. 60KW.

Accelerator Design Guidance

*** Low beam losses:** to ensure the radioactivity induced by the lost particles on machine is low enough to allow manual maintenance on the linac.

- **High reliability:** to provide beam more then 240 days per year.
- *** Low cost:** parameter optimization for low investment and operation cost.
- *** Upgrade feasibility:** phased development to higher beam power to meet the demand from users of multi-disciplines in future.

Main Parameters of the Linac

	Ion Source	RFQ	DTL
Input Energy (MeV)		0.075	3.5
Output Energy(MeV)	0.075	3.5	70/130
Pulse Current (mA)	20/40	20/40	20/40
RF frequency (MHz)	2.4GHz	352.2	352.2
Duty factor (%)	0.5	0.5	0.5
Repetition cycle (Hz)		25	25

DTL tanks are designed

Tank	1	2	3	4	5	6	7	8	Tot al
E _{out} (MeV)	18	35	53	70	87	102	116	130	
P _{cu+beam} (MW)	1.92	2.03	2.06	2.01	2.09	2.06	1.97	1.96	16.1
Length(m)	7.38	7.45	7.79	7.64	6.88	6.75	6.43	6.36	56.68
N _{cell}	64	38	31	26	21	19	17	16	232
E ₀ (MV/m)	2-3	3	3	3	3	3	3	3	
$\boldsymbol{\phi}_{s}^{(0)}$	39-25	25	25	25	25	25	25	25	
N _{post}	32	38	31	26	21	19	17	16	200

Beam dynamic is simulated with PARMILA code

The beam is well matched with a FODO lattice, almost no halo generation. The beam radius (Max & rms) is much smaller than the bore radius.

The quadrupole magnet in the 1st drift tube is designed. It uses halo-conductor coil with about 600A (35mm long)

The field gradient error is less than 0.2% within bore radius.

main parameters of RCS

Kinetic energy (inj.)	70 MeV	Kinetic energy (ext.)	1.6 GeV
γ at injection	1.0746	γ at extraction	2.7053
β at injection	0.3661	β at extraction	0.9292
Beam momentum (inj.)	0.369 (GeV/c)	Beam momentum (ext.)	2.359 (GeV/c)
Magnetic rigidity (inj.)	1.231 (T·m)	Magnetic rigidity (ext.)	7.867
			(T·m)
Bunching factor (inj.)	0.4	Repetition frequency	25 Hz
Emittance at injection	286.4 π mm·mrad	Tune shift due to s.c. (inj.)	-0.2
No. of particle/cycle	1.56×10 ¹³	Output current	62.5 µA
Beam power (ext.)	100 kW		

Linear lattice

- A 4-fold symmetric lattice is chosen.
- A FODO type lattice is adopted in arcs.
- 8 bends are included in one arc, with a bending angle of 11.25 degree for each bend.
- Each cell in arcs has a phase advance of 90 degree in horizontal and quasi-90 degree in vertical.
- FOFDOD lattice is used in straight sections.
- Two 7-meter long straight sections locate between two arcs.

Layout of RCS

Criteria for matching the linear lattice

- $\beta_{x,y} < 25 \text{ m}, \eta < 4 \text{ m}$ for small aperture.
- Small betatron function in the straight section.
- Enough drift spaces for various elements accommodation.
- As same length of quadrupoles as possible.
- As less power supplies of quadrupoles as possible.
- Gradient of quadrupoles less than 5.5 T/m.
- Horizontal and vertical tunes (integer parts) are split by an integer for a small coupling resonance.

Main parameters of the RCS lattice

Circum ference	238.8 m	Bending radius	8.149 m
No. of superperiod	4	Length of cell in arc	8.25 m
Max. β in arc (x/y)	14.6/14.3m	Max. β in long S.S. (x/y)	11.7/9.0m
Max. β in dipole (x/y)	11.0/10.4m	Max. η in arc	3.66m
Max. β in arc quads (x/y)	14.6/14.3m	Max. β in S.S. quads (x/y)	11.9/21.7m
Transverse tunes (x/y)	6.37/5.32	Natural chromaticity (x/y)	-6.86/-7.06
Momentum compaction	0.0373	Transition energy	5.175
Rev. period @ inj.	2.1758 µs	Rev. period @ ext.	0.8572 μs
Emittance	254 π mm∙mrad	Bunching factor @ inj.	0.3

Acceptance

- A momentum acceptance of ±1% is assumed.
- Dispersion free regions

Horizontal:
$$2 \times \left(\sqrt{2 \times \varepsilon_x \beta_x} + 5 \text{ [mm]} \right)$$

Vertical: $2 \times \left(\sqrt{2 \times \varepsilon_y \beta_y} + 5 \text{ [mm]} \right)$

Some parameters of magnets

Dipoles

	-		
No. of dipole	32	Good field @ injection (cm×cm)	22.20×15.42
Magnetic length	1.6 m	Good field @ extraction (cm×cm)	16.67×10.09
Bending radius	8.149 m	Gap height	18.42 cm
Bending angle per dipole	11.25°	Sagitta	3.924 cm
Field @ injection	0.1511 T	Up-ramp period	19.5 ms
Field @ extraction	0.9654 T	Ramp rate	0–41.76 T/s

✓ Top and bottom chamber thickness + baking clearance = 3 cm

Quadrupoles

No. of quads (arc+S.S)	28+40	No. of power supplies	5
Good field @ injection (arc & S.S. quad,cm×cm)	25.6×17.9 16.4×21.8	Good field @ extraction (arc & S.S. quad,cm×cm)	19.2×11.7 10.7×14.1
Magnetic strength (<i>B'/Bρ</i> , arc quads)	0.67 m ⁻² 0.55 m ⁻²	Magnetic gradient (<i>B'</i> , arc quads, T/m)	0.85 - 5.40 0.67 - 4.29
Magnetic strength (<i>B'/Bρ</i> , S.S. quads)	0.68 m ⁻² 0.28 m ⁻² 0.64 m ⁻²	Magnetic gradient (<i>B</i> ', S.S. quads, T/m)	0.84 - 5.38 0.34 - 2.19 0.78 - 5.01
Peak field at pole tip at extraction (arc quads)	0.77 T 0.61 T	Peak field at pole tip at extraction (S.S quads)	0.67 T 0.27 T 0.62 T
Diameter (arc & S.S quads)	28.6 cm 24.8 cm	Magnetic length	0.5 m

✓ Chamber thickness + baking clearance = 3 cm

Tune grid graph

 $V_{\mathbf{x}}$

Preliminary Study on Injection

- Injection happens in the long straight sections.
- Fast kickers and bumps are used to make orbit and painting.
- A stripping foil, located in the center of the two long straight sections, is used to obtain proton from H⁻.
- A possibility of higher injection energy, 130 MeV, is considered.

Layout of the straight sections with injection elements

- B1 ~ B4 make an orbit bump of 40 mm at the exit of QSD.
- HK1 ~ HK4 can produce another 40 mm bump in painting.
- VK1 ~ VK4 produce 80 mm bump at the exit of QSD in painting.

RCS parameters for injection

Parameters	$E_T = 70 MeV$	E _T = 130 MeV
γ of injection beam	1.075	1.139
Momentum of injection beam	0.369 GeV/c	0.511 GeV/c
Revolutionary frequency	0.4596 MHz	0.6002 MHz
Revolutionary period	2.1758 µs	1.6661 µs
Magnetic rigidity	1.2313 T ·m	1.7036 T ·m
Emittance of inj. Beam	4 π mm⋅mrad	4 π mm·mrad
Emittance after painting	254 π mm·mrad	254 π mm·mrad
Time of injection	1 ms	0.8 ms
Turns of injection	460	480
Repetition rate	25 Hz	25 Hz

Main parameters of injection elements (70 MeV)

		Element 1 & 4	Element 2 & 3
	Effective length	1.0 m	0.5 m
Bump	Max. bending angle	12.92 mrad	13.10 mrad
	Max. magnetic field	159.05 Gs	322.53 Gs
Hori. kicker	Effective length	0.3 m	0.3 m
	Max. bending angle	15.53 mrad	11.27 mrad
	Max. magnetic field	637.50 Gs	462.62 Gs
	Effective length	0.3 m	0.3 m
Vert. kicker	Max. bending angle	16.69 mrad	10.48 mrad
	Max. magnetic field	684.85 Gs	430.08 Gs

Extraction

Single turn extraction is adopted.

- One long S.S and a 3-meter long S.S will accommodate extraction elements.
- Kickers bend the beam away horizontally, together with a septum.

Schematic layout of extraction region

RCS parameters for extraction

Extraction energy	1.6 GeV	γ of extraction beam	2.705
Magnetic rigidity	7.867 T·m	Unnormalized emit.	101πmm·mrad
Rev. frequency	1.1665 MHz	Rev. period	0.8572 μs
Repetition rate	25 Hz	Bunch number	2(h=2), 4(h=4)

Extraction kicker and septum parameters

		5	
		Total effective length	4.5 m
	Vielson	Total kick angle	21.62 mrad
	Kicker	Magnetic field	378 Gs
		Horizontal gap	15 cm
		Vertical gap	10 cm
	Total effective length	2.5 m	
		Bending angle	182 mrad
	C and transp	Magnetic field	5.727 kGs
	Septum	Thickness	1.5 cm
		Horizontal gap	15 cm
	Vertical gap	15 cm	

Key Technologies

Kagnet system

- ***** Power converter system
- **Radio-frequency system**
- ***** Vacuum system
- ***** H⁻Injection
 - Extraction

- Because of high intensity and rapid cycling all hardware systems become very complex and difficult .We lack of experience.
- A delegation have visited JPARC RCS recently and our experts learned a lot from this visiting.
- Designing of hardware systems are just starting.
- Because IHEP is busy for constructing BEPC2, before the approval of CSNS at least we have two or three years for detail design and main technologies developing.
- Meantime we need to exploit the possibility of using FFAG as the spallation neutron source.

- **1.6 GeV (100 kW-200 kW)**
- For 100 kW need 62.5 μa.
 Total number of particles ~3.75x10¹⁴(25Hz)
- Particles/pulse~1.5x10¹³.
- S.C.limit : 1.5x 10¹³ (3.1x10¹³)
 70MeV (130MeV) linac injection, δ ν = 0.3 (for emi ~250 pi mm mrad, b=0.3).

Scaling FFAG ,one possible choice.1.5GeV Proton FFAGNo. of sector 60B field 2.5 Tpacking factor 42 %phase advance 114/60 deg.k-value 100orbit excursion 0.61mradius 50 m

Injection: Linac 50ma 0.05ms 1.5x10¹³, 25Hz.

Pf/Pi=6.1 (for 70/1600) one stage Pf/Pi=2.95 (70/500), 2.16(500/1600) two stage.

Non-scaling FFAG

N=57 periods Linear gradient nux/cell =0.4-0.1 nuy/cell=0.4-0.1 nux=21.1-8.176 nuy=25.3-2.9496

Summary

• ADS and CSNS in China are just at the starting stage. They can share the technology achievements in HPPA from each other, and then both can be promoted.

• CSNS may become a new developing direction of IHEP after BEPCII upgrade project is finished.

• International cooperation is highly demanded.

Thank You

for attention