$Building \ Taylor \ Maps \ with \ Mathematica \ and \ Applications \ to \ FFAG$

Mathematica can handle Taylor series analytically.

All coeff. are numbers \Rightarrow numerical map. For now only 4D map:

$$X_f = : \mathcal{M} : X|_{X = X_0} = e^{:F_{conc}:} R_{tot}.X|_{X = X_0}$$
 $X_0 = \text{initial vector}; \qquad X_f = \text{final vector}.$

Phase sp. vector: $\mathbf{X}=(x,p_x,\tau,p_\tau)$ – deviations from ref. orb. with momentum p_0 and curvature $h(s)=1/\rho_0(s)$.

Note: $:\mathcal{M}:$ is just 4 polynomial functions of the comp. of X (and in fact 3, because $p_t=const$)

Fixed point is a solution $(x, p_x)|_{co}$ of the first two eqn. $X_f = X_0$ for a fixed p_t .

FFAG opt. elements: combined sect. bend B quadrupole Q drift D

$$1 \text{ cell} = (\mathbf{Q} - \mathbf{D} - \mathbf{B} - \mathbf{D} - \mathbf{Q})$$

Field expansion: We assume field B_y changes in radial dir. linearly to sec. order in x and keep only cubic terms in A_s and H)

$$\frac{eA_s}{p_0} = -hx + \frac{1}{2}(k_1 + h^2)x^2 - \frac{1}{6}(hk_1 - 3h^3)x^3 + O(x^4)$$

$$\frac{e}{p_0}B_y(x) = \frac{e}{p_0}\left(\frac{hA_s}{1+hx} + \frac{\partial A_s}{\partial x}\right) = -h + k_1x + O(x^3)$$

The long. vect pot. is truncated to 3d order of x.

COSY uses a higher order expansion obeying LAPLACE – expect differences!

Hamiltonian before expansion of the $\sqrt{\dots}$:

$$H = -(1+hx)\left[rac{eA_s}{p_0} + \sqrt{(1+\delta)^2-p_x^2}
ight] =$$
 geom.terms kinematic

$$= hx + \frac{1}{2}(h^2 - k_1)x^2 - \frac{1}{3}hk_1x^3 + 0(x^4) - (1 + hx)\sqrt{(1 + \delta)^2 - p_x^2} - \frac{p_\tau}{\beta_0}, \quad where$$
$$(1 + \delta)^2 = 1 - \frac{2p_\tau}{\beta_0} + p_\tau^2; \quad \delta = (p - p_0)/p_0.$$

All momenta normalized to p_0 .

now expand H over X_i to order Nord (Series):

for geom. terms retain order 3

for kinematic retain Nord >> 1

Detour: single combined sector bend

The rotational symmetry implies that all closed orbits are circular. This follows from one of the equations of motion taken with the following constraint – the off-momentum (p) orbit has to be at each point parallel to the reference (p_0) orbit:

$$p_x' = -\frac{\partial H}{\partial x}|_{p_x=0} = 0 \qquad \Rightarrow$$

$$h^2 x - k_1 x - h k_1 x^2 - h \delta = 0 \qquad \Leftrightarrow$$

$$e(B_0 + \frac{n_0 B_0}{\rho_0} x)(\rho_0 + x) = p_0 (1 + \delta) = p.$$

(') denotes derivative w.r.t. s. The off-momentum closed orbit is arc of a circle of radius $\rho_0 + x$, at which radius the magnetic field is $B_0 + n_0 B_0 / \rho_0 x$.

Here $h(s) = 1/\rho_0(s)$ and $p_0 = eB_0\rho_0$ are the design orbit curvature and momentum, and $-k_1\rho_0^2 \equiv n_0$ is the field index.

Comparisons: Lie algebra notebook and COSY

COSY script – orbit finder is a courtesy of Dejan Trbojevic

Lie algebraic tools in Mathematica

these operate on polynomials:
Poisson bracket (PB),
the Cambell-Baker-Hausdorf theorem (CBH),
the exponential series defining the Lie
transform

and the module GetRmat.

$$\mathbf{H} = \mathbf{PB}[\mathbf{F}, \mathbf{G}] \Leftrightarrow h = : f : g \equiv [f, g];$$

$$\mathbf{H} = \mathbf{CBH}[\mathbf{F}, \mathbf{G}] \Leftrightarrow h = f + g + \frac{1}{2}[f, g] + ...$$

$$(e^{:f:}e^{:g:} = e^{:h:})$$

$$\mathbf{H} = \mathbf{LieExp}[\mathbf{F}, \mathbf{G}] \Leftrightarrow h = g + [f, g] + \frac{1}{2!}[f, [f, g]] + ...$$

$$(h = e^{:f:}g)$$

$$\mathbf{R} = \operatorname{GetRmat}[f^{(2)}] \Leftrightarrow e^{:f^{(2)}:} \leftrightarrow R$$

F,G and H are polinomials (not monomials – the orders are not separated) R is 4x4 matrix.

A. Chao, Lecture Notes on Topics in Accel. Physics, Chapter 8: "Truncated Power Series Algebra" http://www.slac.stanford.edu/achao/lecturenotes.html

```
PB[F_{,G_{,}}] := (D[#1,x]D[#2,px]-D[#2,x]D[#1,px]+
+ <same for t,pt> &)[F, G];
CBH[F_,G_] := (F + G + 1/2 PB[F, G] + ...
+ 1/24 PB[F, PB[G, PB[G, F]]]) &[F, G];
LieExp[F_,G_] := (#2 + PB[#1, #2] +
1/2!*PB[#1, PB[#1, #2]] + ... ) &[F, G];
GetRmat[f2_] :=
Module [\{R, G, FF\}, FF =
   G = S.FF;
 R = MatrixExp[G] // ExpToTrig]
```

Nord = the order of the final map.

After each call of CBH, the resultant
polynomial is truncated, retaining terms up
to order Nord+1

Max. number of nested Poisson brackets determined empirically – to ensure accuracy to this order.

The same is valid for LieExp, but the retained terms are of order Nord.

Module GetRmat (Appendix) computes R – the transport matrix corresponding to linear operator $f^{(2)}$.

Other standard *Mathematica* operations are: MatrixExp, Series, Chop, Coefficient, FindRoot and Timing.

Algorithm to build the map

Reordering rule (earlier elements appear on the left - same arg X everywhere):

$$: \mathcal{M} := \prod_{n=1}^{N_{ele}} e^{:f_n(X):}, \quad : f_n(X) := -L_n : H_n(X):$$

Thin kick factorization – present map as nonlin. kicks and linear operators (matrices)

$$e^{:f_n:} = e^{:f_n^{kick}:} e^{f_n^{(2)}},$$

which can be seen as a thin kick

$$e^{:f_n^{kick}:} = e^{:f_n:}e^{-:f_n^{(2)}:}$$

at the entrance of the *n*-th element.

Nele similarity transforms to commute all linear operators to the right, result in:

$$:\mathcal{M}:=\prod_{n=1}^{N_{ele}}e^{:f_{n}^{kick}(ilde{R}_{n}.X):}R_{tot}=e^{:F_{conc}:}R_{tot}$$

where $\tilde{R}_n = \prod_k R_k$ is the accumulated matrix to the n-th kick and $R_{tot} = \tilde{R}_{Nele}$.

Finally:

$$X_f = : \mathcal{M} : X|_{X = X_0} = e^{:F_{conc}:} R_{tot}.X|_{X = X_0}$$
 $X_0 = \text{initial vector}; \qquad X_f = \text{final vector}.$

Results, CPU Time

- We have compared off-energy cl. orb., hor. tune and orbit path length with the ones of COSY 8-th ord. map
- We expect that as N increases $N=4 \rightarrow 8 \Rightarrow$ better agreement this is seen to be true for N=4,5,6 exact agreement is not possible (1-2 mm difference at $\delta=-0.5$) most likely caused by the missing geometric > 3 terms in A_s
- Notes:
 - easy to extend to 6D, but time...;
 - cannot compete with COSY in speed,e.g.:

7-th order 4D map for 5 element line takes ~ 2000 sec on 1 GHz CPU

Table 1: approx result of Timing command (CPU time) in sec. (Numb. of nested P. brackets kept: 4 in LieExp and 3 in BCH)

Map ord.	concatenation loop	LieExp
4	25	40
5	120	150
6	300	450
7	2000	2000
8	2500	2550

References

- [1] R.Ruth, AIP Conference Proc. 153, Vol.1 p. 166 Hamiltonian
- [2] Johan Bengtsson, Doctorate Thesis CERN 88-05. Hamilt., $A_s(x, y)$ expansion
- [3] A. Dragt, Exact Numerical Calculation of Chromaticity in Small Rings, Particle Accelerators, 1982, Vol 12 pp 205-218. geom. and kinem. terms both important in small rings
- [4] A. Chao, Lecture Notes on Topics in Accel. Physics, Chapter 8: "Truncated Power Series Algebra" http://www.slac.stanford.edu/achao/lecturenotes.httpe.lie algebra needed here
- [5] A. Dragt and E. Forest, Computation of nonlinear behaviour of Hamiltonian systems using Lie algebraic methods
 J. Math. Phys. 24 (12), 1983. general
- [6] A. Dragt, Lectures on Nonlinear Orbit Dynamics, AIP Proc. 87, Phys. High Energy Accel., Fermilab, 1981, p.147 Hamilt. terms for a bend (polar)
- [7] J. Irwin, Construction of High-order Maps for Large Proton Accelerators;
 Tanaji Sen, Y.T. Yan, J. Irwin, LIEMAP
 : A Program for Extracting a one-turn
 Single Exponent Lie Generator Map,

- Proc. PAC 1991 similar recipie for the map, but drift is linear
- [8] E.Forest, AIP Conf. Proc, 184 Vol 1 1987; also: E.Forest, R.D.Ruth, Fourth Order Symplectic Integration, Physica D vol. 43 (1990) 105-117 43 (Sect. 5.5: with the square root expanded to second order in p_x, p_y , and with cubic and higher terms in A_s ignored, the motion is exactly solvable giving rise to a δ -dependent R matrix).
- [9] COSY Infinity version 7, K. Makino and M. Berz, in AIP Conference Proceedings, 391 (1996) 253. and http://bt.pa.msu.edu/pub/
 The author is thankful to Martin Berz for his comment on the final representation of the map