Building Taylor Maps with Mathematica and
Applications to FFAG

Mathematica can handle Taylor series
analytically.

All coeftf. are numbers = numerical map.
For now only 4D map:
Xf =: M: X|X=X0 = B:Fc‘mc:Rtot-X|X=X0

Xo=initial vector; X g=final vector.

Phase sp. vector: X=(z,p;,7,pr) —
deviations from ref. orb. with momentum
po and curvature h(s) = 1/pg(s).

Note: : M :is just 4 polynomial functions
of the comp. of X (and in fact 3, because
py = const)

Closed orb as fixed point (FindRoot)
tune by Jacobian at the fix.pt.

CT directly from the 3-d polynom.

Fixed point is a solution (x,p,)|., of the
first two eqn. X = X, for a fixed p;.
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FFAG opt. elements: combined sect. bend B
quadrupole Q
drift D

1 cell = (Q-D-B-D-Q)

Field expansion: We assume field B, changes
in radial dir. linearly to sec. order in x and keep
only cubic terms in A; and H )

A 1 1

“Cs — _ha+ —(ky + hY)2? — = (hky — 3h3)2® + O(z?)
Po 2 6

(& € hA 0A

—B — > > = —h k O ?
Do (@) 190(1+her 3$) s+ Ol

The long. vect pot. is truncated to 3d order of x.

COSY uses a higher order expansion obeying
LAPLACE — expect differences!
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Hamiltonian before expansion of the ./ :

H=—(1+ha) |4 + /1+0)?—p2|=

Do
geom.terms kinematic

1 1
= hx + 5(h2 — kp)x? — ghklx?’ +0(z*)—

where

~ (1+ ha) /(T 62 —p2 — 2.
Bo

2p,
(1+6)=1- %ﬂﬁ; 6 = (p — po)/po-

All momenta normalized to pg.
now expand H over X; to order Nord (Series):
for geom. terms retain order 3

for kinematic retain Nord >> 1
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Detour: single combined sector bend

The rotational symmetry implies that all closed
orbits are circular. This follows from one of the
equations of motion taken with the following
constraint — the off-momentum (p) orbit has to be at
each point parallel to the reference (po) orbit:

,  OH
Pz = T g | Pa=0

Wz — kiz — hkiz® —hé =0 &

=0 =

noBo

e(Bo + z)(po +z) =po(1+6) =p .

(") denotes derivative w.r.t. s. The off-momentum
closed orbit is arc of a circle of radius pg + x, at
which radius the magnetic field is Bo 4+ noBo/poz.

Here h(s) = 1/po(s) and po = eBopo are the design
orbit curvature and momentum, and —ki1pg = no is

the field index.
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Comparisons: Lie algebra notebook and COSY

closed orbit x|m|
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COSY script — orbit finder is a courtesy of
Dejan Trbojevic
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Lie algebraic tools in Mathematica

these operate on polynomials:

Poisson bracket (PB),

the Cambell-Baker-Hausdorf theorem (CBH),
the exponential series defining the Lie
transform

and the module GetRmat.

H=PB[F,G] & h= :f:9=]f4g];
H — CBHJ[F, G] (:)h:f+g—|—%[f,g]—|—...

(e:f:e:g: — e:h:)

H = LieBxp[F, G] & h=g+[f,g]+ o [/, [fol] + -

(h=e7g)

f(2)

R =GetRmat[fP] < ¢/ & R

F,G and H are polinomials (not monomials —

the orders are not separated) R is 4x4 matrix.

A. Chao, Lecture Notes on Topics in Accel. Physics,
Chapter 8: “Truncated Power Series Algebra”

http://www.slac.stanford.edu/ achao/lecturenotes.html
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PB[F_,G_] := (D[#1,x]D[#2,px]-D[#2,x]1D[#1,px]+
+ <same for t,pt> &)[F, GJ;

CBH[F_,G_] := (F + G + 1/2 PB[F, G] + ...
+ 1/24 PB[F, PB[G, PBI[G, F1]1) &[F, GI];

LieExp[F_,G_] := (#2 + PB[#1, #2] +
1/21%PB[#1, PB[#1, #2]11 + ... ) &[F, GI;
GetRmat [t¥ ] :=

Module [{R, G, FF}, FF =

~2 Coefficient [£2, %®] O o O
O o o of.
| oo ol
O O O O

G =5 FF;
R::HgtrixExij].ﬁfExpTDTriq]
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Nord = the order of the final map.

After each call of CBH, the resultant
polynomial is truncated, retaining terms up
to order Nord+}1

Max. number of nested Poisson brackets
determined empirically — to ensure accuracy

to this order.

The same is valid for LieExp, but the retained

terms are of order Nord.

Module GetRmat (Appendix) computes R — the
transport matrix corresponding to linear

operator f(2) .

Other standard Mathematica operations are:
MatrixExp, Series, Chop, Coefficient,FindRoot

and Timing.
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Algorithm to build the map

Reordering rule (earlier elements appear on
the left — same arg X everywhere):

: M :ng‘e efn(X) v £ (X): = —Ln: Hy(X):

=1

Thin kick factorization — present map as
nonlin. kicks and linear operators (matrices)

:fkick_ ?(%2)

efni = e ‘e :

which can be seen as a thin kick

.pkick, . . e (2),
e.fn J— e.fn.e fn

at the entrance of the n-th element.

Nele similarity transforms to commute all
linear operators to the right, result in:

Ng; :kiCkf{,.X: : F :
: M :Hn;fefn (Bn-X): R, 0e = eFeonci Ry oy

where f{n = Hk Ry is the accumulated matrix
to the n-th kick and Rio: = Rneie-

Finally:
Xy=:M: X|x=x, = €7 Ryot. X | x=x,

Xop=initial vector; X y=final vector.
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Results, CPU Time

e We have compared off-energy cl. orb.,
hor. tune and orbit path length with the
ones of COSY 8-th ord. map

e We expect that as N increases
N=4 — 8 = better agreement

this is seen to be true for N=4,5,6

exact agreement is not possible
(1-2 mm difference at § = —0.5)

most likely caused by the missing

geometric > 3 terms in A,

e Notes:
— easy to extend to 6D, but time...;
— cannot compete with COSY in speed,
e.g.:
7-th order 4D map for 5 element line
takes ~ 2000 sec on 1 GHz CPU
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Table 1: approx result of Timing command
(CPU time) in sec. (Numb. of nested P.
brackets kept: 4 in LieExp and 3 in BCH)

Map ord. | concatenation loop | LieExp
4 25 40
5 120 150
6 300 450
7 2000 2000
8 2500 2550
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